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Herein we present EPR, ENDOR, spin trapping, product
studies, and ab initio results for the bicyclo[3.3.3]undec-1-yl,
or 1-manxyl, radical1. This sterically open radical shows
remarkable persistence and unexpectedly smallâ-hydrogen
hyperfine couplings. Surprisingly, unlike their small-ring
cousins,1 simple bridgehead radicals of medium-ring bicycloal-
kanes have not been reported.
The special structure/strain relationship in medium-ring

bicyclic frameworks has allowed the construction of such
unusual chemical entities as one- and three-electron bonds,2

symmetrical C-H-C hydride-bridged carbenium3 and N-H-N
hydrogen-bonded ammonium cations,4 interbridgehead donor-
acceptor complexes,5 hyperstable olefins,6 near-planar aliphatic
amines,7 stabilized bridgehead carbocations,8 and rapidly au-
toxidizable alkanes.9 Our interest in through-space perturbation
of unpaired electron centers10 has drawn us to the rich potential
of interbridgehead chemistry, for which1 is a key reference
species.
With its 27.2 kcal/mol strain energy (SE)11 (Table 1) and

high bridgehead reactivity,12 manxane (2)13 readily undergoes
hydrogen abstraction bytert-butoxyl radicals to yield radical
1.14 Figure 1 shows the EPR spectrum obtained from photolysis
of a cyclopropane solution of manxane15 and di-tert-butyl
peroxide; identical spectra arise in toluene, methylcyclopentane
solutions, and neat di-tert-butyl peroxide. We assign this

spectrum to 1-manxyl radical1 on the following grounds: (1)
the radical is tertiary, showing neither anR C-H hyperfine
coupling constant nor a corresponding splitting in the 2,4,6-tri-
tert-butylnitrosobenzene spin-trapping product;16 (2) simulation
of the spectrum (Figure 1) requires five different sets of three
equivalent protons; (3) the radical decays via an extraordinarily
slow bimolecular process, and trapping by addition ofn-Bu3-
SnH immediately after photolysis turns off production of its
disproportionation products, of which one is [3.3.3]propellane;
(4) the known autoxidation of2 is specific for the bridgehead
site.9,12

With 18 secondary and only 2 tertiary C-H bonds in2,
significant secondary hydrogen abstraction might be expected
on statistical grounds, but no evidence for the secondary 2- and
3-manxyl radicals3 and4 is seen in the EPR spectra under any
conditions. Besides being the unique tertiary sites in manxane,
the bridgeheads also afford the greatest strain relief upon
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13C NMR (300 MHz, CDCl3) δ 30.74 (2× CH, J13CH ) 120 Hz), 28.96 (6
× CH2, J13CH ) 124.2 Hz), 20.1 (3× CH2, J13CH ) 125 Hz); MS (EI)m/z
(relative intensity) 152 (M+, 31), 124 (27), 109 (47), 96 (100), 81 (91), 67
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(16) Spin trapping of1 with 2,4,6-tri-tert-butylnitrosobenzene (TBN)
gives a persistentN-alkoxyanilino radical withg) 2.003,aN ) 9.0 G (1N),
aH ) 1.8 G (2H). The 1.8 Gmeta-H hyperfine and the absence of
â-hydrogen splittings indicate exclusive addition at the oxygen atom of
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multiminute trapping time. Terabe, S.; Konaka, R.J. Chem. Soc., Perkin
Trans. 21973, 369.

Table 1. Calculated Heats of Formation, Strain Energies and Bond
Dissociation Energiesa

compound
total

energyb ∆Hf
c SEd BDEe

manxane (2) -428.17907 -20.4 (-21.2)f 28.0 (27.2)
1-manxyl (1) -427.56808 14.6 19.9 87.9
2-manxyl (3) -427.55704 21.5 24.6 94.8
3-manxyl (4) -427.55538 22.5 25.6 95.8
1,1-bimanxyl (7) -855.16181 -11.1 80.8
[3.3.3]propellane (8) -427.04326 -28.7 14.9
1-manxene (9) -426.97830 13.0 35.0

a In kcal/mol; structures were fully optimized at the HF/6-31G* level,
using Spartan 4.0 (Wavefunction Inc., Irvine, CA).b Total energies are
given in hartrees, 1 hartree) 627.5 kcal/mol.cCalculated (experi-
mental) from the Wiberg group equivalents (Wiberg, K. B.J. Org.
Chem. 1985, 50, 5285) for2, 7, 8, and9. The BDE estimates were
used to calculate values for the product radicals1, 3, and4. d Strain
energy; from calculated (experimental)∆Hf and the Benson group
equivalents (Benson, S. W.Thermochemical Kinetics; John Wiley: New
York, 1976) for 2, 7, 8, and 9 and from isodesmic reactionsVs.
isobutane/tert-butyl radical for1 and propane/isopropyl radical for3
and4. eBased on BDE (t-Bu-H) ) 96.0 kcal/mol (Gutman, D.Acc.
Chem. Res. 1990, 23, 375) and BDE (i-Pr-H) ) 98.2 kcal/mol (Russell,
J. J.; Seetula, J. A.; Gutman, D.J. Am. Chem. Soc. 1988, 110, 3092).
f See ref 11.

Figure 1. (a) EPR spectrum (9.1 GHz) of 1-manxyl radicals obtained
on hydrogen abstraction from manxane bytert-butoxyl radicals in
cyclopropane at-55 °C (g ) 2.0024). (b) Computer simulation.
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hydrogen abstraction, resulting in a BDE (bond dissociation
energy) difference of 6.9 kcal/mol (Table 1). Even a fraction
of this difference between H-abstraction transition states17would
easily outweigh the 9:1 statistical factor.
The experimental EPR spectrum of1, essentially independent

of temperature, can be simulated18with the following hyperfine
constants:aH ) 5.3 G (3H),aH ) 2.4 G (3H),aH ) 0.99 G
(3H), aH ) 0.88 G (3H) (see Figure 1);1H ENDOR19 studies
revealed two more couplings at 0.19 and 0.08 G.20 INDO
calculations21 performed on PM3 and UHF/6-31G* geometries
of 1 reproduce the magnitude of the smaller couplings well but
predict aâ-hydrogen hyperfine of∼20 G, well above the largest
aH observed (5.3 G). TentativeaH assignments, based on INDO
results, are 5.3 G and 0.88 G forâ-H, 2.4 G and 0.99 G for
γ-H, 0.08 G forδ-H, and 0.19 G for theε-H.
According to the usual McConnell relation,22 the 5.3 Gâ-H

splitting for1 is unexpectedly low. The radical cations of [3.3.3]-
propellane23 and 1,5-diazabicyclo[3.3.3]undecane24 showâ-H
couplings of 17 and 22 G, respectively, interpreted as reflecting
nearly planar radicals withθ angles (Figure 2) of approximately
30°.25 The more comparableaHâ values of 6.64 and 6.58 G
for the localized radicals 1-bicyclo[2.2.2]octyl (5) and 1-ada-
mantyl (6) are attributed to pyramidal geometries at the
bridgehead radical sites.26 For 1, however, the UHF/6-31G*
structure shows only modest pyramidalization andâ-hydrogens

that are more nearly eclipsed than those in5 and6, leaving the
low aHâ value puzzling.
The decay of1 in methylcyclopentane, monitored by EPR,

is second order with a rate constant of 0.5 M-1s-1 at 23°C and
a half-life of 6 h for a 4× 10-4 M initial radical concentration.27

Such exceptional persistence is unique considering the lack of
steric protection around the radical center.28 In principle, 1
might dimerize to 1,1-bimanxyl (7), but no7 is detected, and
the calculated F-strain (Table 1) in this compound is large,ca.
25 kcal/mol. A novelε-disproportionation29 gives2 and [3.3.3]-
propellane (8), whose presence in the product mixture has been
confirmed by independent synthesis and GC-MS.30 A second
150 amu product, seen by GC-MS, is tentatively assigned to
1-manxene (9), the Bredt alkene from conventionalâ-hydrogen
disproportionation of1. That both these products are derived
from 1 is confirmed by their absence in samples where1 has
been quenched after photolysis by the addition ofn-Bu3SnH.
Ab initio results (Table 1) indicate thatε-disproportionation is
thermochemically preferred; further studies to confirm the
assignment of9 are underway.
To date, persistent alkyl radicals have depended on steric

protection by bulky groups around the radical center. The
1-manxyl radical1 is the first example of a persistent simple
alkyl radical whose exceptionally long lifetime arises not from
steric protection but from the high strain of all its decomposition
products. The remarkable persistence and puzzlingly low
hyperfine splittings for theâ-hydrogens in1 suggest that even
such simple entities as bridgehead alkyl radicals have not yet
given up all their secrets. In ongoing research, we are exploring
related bicyclic systems in which the effects of positioning
heteroatoms at the bridgehead opposite to the radical center are
probed.
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Figure 2. HF/6-31G* geometry-optimized structures of manxane (2),
1-manxyl (1), 1-bicyclo[2.2.2]octyl (5), and 1-adamantyl (6) radicals.
Legend (C3 refers to the axis of symmetry):R ) C3C•Câ angle;θ )
C3C•CâHâ torsion angle.
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